
Isométries de l’espace

1.Définition
On appelle isométrie de l’espace ε, toute transformation ponctuelle f qui conserve les distances.

∀ (M, N) ∈ ε2, f(M) = M ′ et f(N) = N ′, on a : M ′N ′ = MN.

2. Les types d’isométries de l’espace
Les isométries de l’espace se subdivisent en deux groupes : les déplacements et les antidéplacements.

2.1. Les déplacements

Toute isométrie de l’espace qui conserve l’orientation de l’espace est appelé déplacement.
Les déplacements de l’espace sont : la translation, l’identité, la rotation axiale ( d’axe (∆)), la symétrie
centrale et le vissage.

2.1.1 La translation

a) Définition
Soit ~u un vecteur de ω(où ω désigne l’ensemble des vecteurs de l’espace).

On appelle translation de vecteur ~u et on note t~u, l’application de ε dans lui même, qui à tout point M
associe le point M ′ tel que

−−−→
MM ′ = ~u.

b) Propriété caractéristique
Soit f une application de ε dans lui même. f est une translation si et seulement si, pour tous points M

et N d’images respectives M ′ et N ′, on a :
−−−→
M ′N ′ =

−−→
MN .

c) Expression analytique
Soit t une translation de vecteur ~u(a, b, c),M(x, y, z) un point de ε etM ′(x′, y′, z′) son image par t. On a :

t~u(M) = M ′ ⇐⇒
−−−→
MM ′ = ~u⇐⇒


x′ = x+ a

y′ = y + b

z′ = z + c.

2.1.2 La symétrie centrale et l’identité

• La symétrie centrale de centre A(x0, y0, z0), notée SA, est l’application de ε dans ε, qui à tout point
M associe le point M ′ tel que :

−−→
AM = −

−−→
AM ′.

Elle se définit analytiquement par :
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SA(M) = M ′ ⇐⇒


x′ = −x+ 2x0

y′ = −y + 2y0

z′ = −z + 2z0.

• L’identité idε de ε, est l’application définie telle que : idε(M) = M ′ ⇐⇒M = M ′.

2.1.3. La rotation d’axe (∆) et d’angle θ

a) Définition
Soit (∆) une droite de vecteur directeur ~u, (P ) un plan perpendiculaire à (∆) et θ un réel.

On appelle rotation d’axe (∆) et d’angle θ, notée R(∆,θ), l’application de l’espace qui laisse invariant les
points de (∆) et qui à tout point M non situé sur (∆) associe son image M ′ du plan tel que :{

HM ′ = HM

(
−−→
HM,

−−−→
HM ′) = θ[2π].

où H ∈ (P ) ∩ (∆) .

N.B : Si M ∈ (∆), alors M ′ = M .

b) Éléments caractéristiques de R(∆,θ)

R(∆,θ) est caractérisée par l’axe (∆) et l’angle θ.

• Axe (∆) :
L’axe (∆) est l’ensemble des points invariants par la rotation. On a :

(∆) = inv(R) = {M ∈ ε, R(M) = M}

• Angle θ :
Supposons que l’axe (∆) se présente de la manière suivante :

x = x0 + λa

y = y0 + λb

z = z0 + λc.

Alors la droite (∆) passe par le point A(x0, y0, z0) et est dirigée par ~u(a, b, c).

On détermine l’équation du plan (P), perpendiculaire à (∆), passant par A. ~u(a, b, c) est un vecteur normal
au plan (P) et (P) a pour équation: ax+ by + cz + d = 0.

Soit M ∈ (P) et M ′ son image par R. On a :
cos θ =

−−→
AM.

−−−→
AM ′

‖
−−→
AM‖.‖

−−−→
AM ′‖

sin θ = det(
−−→
AM,

−−−→
AM ′,−→n )

‖
−−→
AM‖.‖

−−−→
AM ′‖

.
.

2



où −→n est le vecteur unitaire normal au plan (P) tel que ~n = ~u
‖~u‖ et ‖

−−→
AM‖ = ‖

−−→
AM ′‖.

Exemple :
Dans l’espace orienté ε rapporté à un repère orthonormé (O;~i,~j,~k). On considère la rotation f défini par :

x′ = −z − 2

y′ = −x
z′ = y − 2.

.

a) Déterminer l’axe (∆) de f .
b) Déterminer l’angle θ de f .

Solution

a) Déterminons l’axe (∆) de f .
x′ = x

y′ = y

z′ = z

⇐⇒


x = −z − 2

y = −x
z = y − 2.

.

En Posant z = λ, on a :
x = −λ− 2

y = −x
λ = y − 2

z = λ

=⇒


x = −λ− 2

y = λ+ 2

z = λ

.

Ainsi, l’axe est la droite (∆) passant par le point A(−2, 2, 0) et de vecteur directeur ~u(−1, 1, 1).

b) Déterminant l’angle θ de f .
Soit (P) : −x + y + z − 4 = 0 le plan perpendiculaire à (∆) passant par A(−2, 2, 0), M(0, 0, 4) un

point de (P) et M ′(−6, 0,−2) son image par f . On a :


cos θ =

−−→
AM.

−−−→
AM ′

‖
−−→
AM‖2

sin θ =
det(
−−→
AM,

−−−→
AM ′, ~u‖~u‖ )

‖
−−→
AM‖2

.

−−→
AM(2,−2, 4),

−−→
AM ′(−4,−2,−2), AM2 = 24,

−−→
AM.

−−→
AM ′ = −12 et cos θ = −1

2
.

~u
‖~u‖(−

1√
3
, 1√

3
, 1√

3
), det(

−−→
AM,

−−→
AM ′, ~u

‖~u‖) = − 36√
3
et sin θ = −

√
3

2
. On a :

{
cos θ = −1

2

sin θ = −
√

3
2

=⇒ θ =
4π

3
[2π].

Remarques
- Toute rotation d’axe (∆) et d’angle π est appelée demi-tour autour de (∆) ou retournement ;
- Tout demi-tour de l’espace est involutif ;
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- La restriction d’une rotation axiale R d’axe (∆) et d’angle θ à un plan est une rotation de ce plan.
Ainsi,

R(∆, θ) :

{
x′ = x cos θ − y sin θ + c1

y′ = x sin θ + y cos θ + c2

~k ∧~i = ~j

2.1.4. Vissage ou déplacement hélicoïdal

a) Définition
Soit (∆) un axe de vecteur directeur ~u.

On appelle vissage de l’espace, noté f , la composée commutative de la rotation axiale d’axe (∆) et de la
translation de vecteur ~u.

b) Éléments caractéristiques du vissage
Le vissage est caractérisé par l’axe (∆), l’angle θ de la rotation et aussi par le vecteur ~u de la translation.

- Axe (∆) : Celui de la rotation. On a :

(∆) =
{
M ∈ (P);

−−−→
MM ′′ = 2

−−−→
MM ′

}
où M ′ = f(M), M ′′ = f ◦ f(M).

- Vecteur : Celui de la translation.
Soit A ∈ (∆) tel que A′ = f(A). alors ~u =

−−→
AA′.

- Angle θ : celui de la rotation.

Pour déterminer l’angle θ, on peut suivre le procédé suivant :

- On trouve l’expression analytique de R : f = R ◦ t~u ⇐⇒ f ◦ t−1
~u = R⇒ R = f ◦ t−1

~u .
- On trouve l’équation du plan (P) passant par A et de vecteur normal ~u
- On choisit un point B du plan et on détermine son image B′ par R : R(B) = B′. Alors :

cos θ =
−→
AB.
−−→
AB′

‖
−→
AB‖.‖

−−→
AB′‖

sin θ = det(
−→
AB,
−−→
AB′,−→n )

‖
−→
AB‖.‖

−−→
AB′‖

.
.

4



Exemple :
Dans l’espace orienté ε rapporté à un repère orthonormé (O;~i,~j,~k). On considère le vissage f défini par :

x′ = x+ 1

y′ = −z + 4

z′ = y.

.

a) Déterminer l’axe (∆).
b) Déterminer son vecteur ~u.
c) Déterminer son angle θ.

Solution
a) Déterminons l’axe (∆) de f .

soitM(x, y, z),M ′(x′, y′, z′) etM ′′(x′′, y′′, z′′) trois points de ε tels que :M ′ = f(M) etM ′′ = f(M ′).
On a :
−−−→
MM ′′ = 2

−−−→
MM ′ ⇐⇒

x′′ − xy′′ − y
z′′ − z

 = 2

x′ − xy′ − y
z′ − z


⇐⇒

 x′ + 1− x
−z′ + 4− y
y′ − z

 = 2

 x+ 1− x
−z + 4− y
y − z


⇐⇒

 x+ 2− x
−y + 4− y
−z + 4− z

 = 2

 x+ 1− x
−z + 4− y
y − z


⇐⇒


2 = 2

Z = 2

y = 2.

=⇒


x = λ

y = 2

z = 2.

D’où l’axe (∆) est la droite passant par A(0, 2, 2) et de vecteur directeur ~v(1, 0, 0) =~i

b) Déterminons son vecteur ~u.

On a : ~u =
−−→
AA′, avec A′ = f(A), ainsi


xA′ = xA + 1

yA′ = −zA + 4

zA′ = yA

=⇒


xA′ = 1

yA′ = 2

zA′ = 2.

.

~u =
−−→
AA′, alors ~u

1− 0
2− 2
2− 2

. D’où ~u =~i.

c) Déterminons son angle θ
Soit (P) le plan orthogonal à (∆) passant par A(0, 2, 2).
~u est un vecteur normal à (P). On a :
(P) : ax+ by + cz + d = 0, or ~u =~i, ainsi, x+ d = 0, A ∈ (P)⇐⇒ d = 0. D’où (P) : x = 0.

Soit B(0, 0, 0) un point de (P). B′ = f(B)⇐⇒ B′(1, 4, 0). On a
−−→
A′B′

 0
2
−2

.

t~u(B) = B1 ⇐⇒
−−→
BB1 = ~u =⇒ B1(1, 0, 0). On a :

−−→
A′B1(0,−2,−2). Ainsi,

cos θ =
−−−→
A′B1.

−−−→
A′B′

‖
−−−→
A′B′‖2

= 0
8

= 0

sin θ =
det(
−−−→
A′B1,

−−−→
A′B′, ~u‖~u‖ )

‖
−−−→
A′B1‖2

= 8
8

= 1
=⇒ θ =

π

2
[2π]

D’où f = R(∆,π
2

) ◦ t~i.
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2.2. Les antidéplacements

On appelle antidéplacement de l’espace, toute isométrie de l’espace qui change l’orientation de l’espace.
Ce sont : la symétrie orthogonale-plan ou réflexion par rapport à un plan et la symétrie glissée.

2.2.1. La symétrie orthogonale-plan

a) Définition
Soit P un plan.

La symétrie orthogonale-plan de base (P), notée SP , est une application de ε dans ε, qui à tout point M

associe le point M ′, tel que :
• Si M ∈ (P), alors M ′ = M ;

• Si M n’appartient pas à (P), alors


(MM ′)⊥(P) (1)
−−−→
HM ′ = −

−−→
HM (2)

H ∈ (P) (3)

Le plan (P) est le plan médiateur du segment [MM ′]. H est le projeté orthogonal de M sur (P) et
milieu de [MM ′].

b) Élément caractéristique de SP
L’élément caractéristique de SP est le plan (P), qui est l’ensemble des points invariants de SP .

on note : inv(SP) = (P).

Exemple
Dans l’espace ε muni d’un repère orthonormé (O;~i,~j,~k), on considère le plan (P) d’équation : x+ y −

z + 1 = 0. Déterminons la symétrie plane de base (P).
En effet,
Soit SP cette symétrie plane, M(x, y, z) le point tel que M ′(x′, y′, z′) son image par SP et H le milieu de
[MM ′]. Ainsi :

SP :


(MM ′)⊥(P) (1)
−−−→
HM ′ = −

−−→
HM (2)

H ∈ (P) (3)

• H milieu de [MM ′] ; H

x+x′

2
y+y′

2
z+z′

2

.

• H ∈ (P)⇐⇒ xH + yH − zH + 1 = 0 =⇒ x+x′

2
+ y+y′

2
− z+z′

2
+ 1 = 0 (4).

• (MM ′)⊥(P)⇐⇒
−−−→
MM ′ = λ~n, λ ∈ R? et ~n(1, 1,−1). On a :

−−−→
MM ′ = λ~n⇐⇒


x′ − x = λ

y′ − y = λ

z′ − z = −λ

=⇒


x′ = x+ λ

y′ = y + λ

z′ = z − λ

(5)

(5) dans (4) =⇒ x+x+λ
2

+ y+y+λ
2
− z+z−λ

2
+ 1 = 0 =⇒ 3λ + 2x + 2y − 2z + 2 = 0. Ainsi, λ =

1
3
(−2x− 2y + 2z − 2).
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En remplaçant λ par 1
3
(−2x− 2y + 2z − 2) dans (5), on obtient :


x′ = 1

3
x− 2

3
y + 2

3
z − 2

3

y′ = −2
3
x+ 1

3
y + 2

3
z − 2

3

z′ = 2
3
x+ 2

3
y + 1

3
z + 2

3
.

D’où,

SP :


x′ = 1

3
x− 2

3
y + 2

3
z − 2

3

y′ = −2
3
x+ 1

3
y + 2

3
z − 2

3

z′ = 2
3
x+ 2

3
y + 1

3
z + 2

3
.

2.2.2. La symétrie glissée

a) Définition
On appelle symétrie glissée, la composée commutative d’une symétrie-plan et d’une translation de vecteur

~u tel que ~u est parallèle au plan de la symétrie.

Notation : Soit f cette symétrie glissée, on a :

f = SP ◦ t~u = t~u ◦ SP

b) Éléments caractéristiques

Les éléments caractéristiques d’une symétrie-plan glissée sont :
- la base P : celle de la symétrie-plan de cette composée ;
- le vecteur ~u : celui de la translation.

• Détermination de la base de la symétrie-plan glissée

(P) étant cette base, alors :

(P) =
{
M ∈ ε;

−−−→
MM ′′ = 2

−−−→
MM ′

}
avec M ′ = f(M) et M ′′ = f ◦ f(M).

• Détermination du vecteur de la translation

f ◦ f = t2~u.

Le vecteur ~u de la translation est ~u =
−−→
HH ′ où H ′ = f(H) et H point fixe de la base (P).
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Exemple
L’espace ε étant muni d’un repère orthonormé (O;~i,~j,~k), on considère la transformation f définie par :

x′ = 1
3
x+ 2

3
y + 2

3
z + 5

3

y′ = 2
3
x+ 1

3
y − 2

3
z − 5

3

z′ = 2
3
x− 2

3
y + 1

3
z + 7

3

1. Déterminer l’ensemble des points invariants par f .
2. Calculer f ◦ f
3. a. Préciser la nature de f

b. Déterminer les éléments caractéristiques de f

Solution

1. Déterminons l’ensemble des points invariants par f .

f(M) = M ⇐⇒


2x− 2y − 2z = 5

2x− 2y − 2z = 5

2x− 2y − 2z = −7

, ce système est incompatible. D’où l’ensemble des points

invariants par f est vide.

2. Calculons f ◦ f

f ◦ f(M) = f [f(M)]⇐⇒


x′′ = 1

3
x′ + 2

3
y′ + 2

3
z′ + 5

3

y′′ = 2
3
x′ + 1

3
y′ − 2

3
z′ − 5

3

z′′ = 2
3
x′ − 2

3
y′ + 1

3
z′ + 7

3

⇐⇒


x′′ = 1

3
(1

3
x+ 2

3
y + 2

3
z + 5

3
) + 2

3
(2

3
x+ 1

3
y − 2

3
z − 5

3
) + 2

3
(2

3
x− 2

3
y + 1

3
z + 7

3
) + 5

3

y′′ = 2
3
(1

3
x+ 2

3
y + 2

3
z + 5

3
) + 1

3
(2

3
x+ 1

3
y − 2

3
z − 5

3
)− 2

3
(2

3
x− 2

3
y + 1

3
z + 7

3
)− 5

3

z′′ = 2
3
(1

3
x+ 2

3
y + 2

3
z + 5

3
)− 2

3
(2

3
x+ 1

3
y − 2

3
z − 5

3
) + 1

3
(2

3
x− 2

3
y + 1

3
z + 7

3
) + 7

3

=⇒ f ◦ f :


x′′ = x+ 8

3

y′′ = y − 8
3

z′′ = z + 16
3

. D’où f ◦ f est une translation de vecteur ~u(8
3
,−8

3
, 16

3
)

3. a. Précisons la nature de f

f étant une isométrie qui n’a aucun point invariant telle que f ◦ f = t~u, alors f est une symétrie
glissée c’est - à - dire la composée d’une symétrie plane et d’une translation.

b. Déterminons les éléments caractéristiques de f

Base : (P)

M ∈ (P)⇐⇒
−−−→
MM ′′ = 2

−−−→
MM ′ avec M ′ = f(M) et M ′′ = f ◦ f(M).

−−−→
MM ′′ = 2

−−−→
MM ′ ⇐⇒


x′′ − x = 2(x′ − x)

y′′ − y = 2(y′ − y)

z′′ − z = 2(z′ − z)

⇐⇒


x+ 8

3
− x = 2[1

3
x+ 2

3
y + 2

3
z + 5

3
− x]

y − 8
3
− y = 2[2

3
x+ 1

3
y − 2

3
z − 5

3
− y]

z + 16
3
− z = 2[2

3
x− 2

3
y + 1

3
z + 7

3
− z]
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=⇒


−4x+ 4y + 4z + 2 = 0

4x− 4y − 4z − 2 = 0

4x− 4y − 4z − 2 = 0

D’où la base P : 2x− 2y − 2z − 1 = 0
Le vecteur ~v :

~v = 1
2
~u. D’où ~v(4

3
,−4

3
, 8

3
).

2.3. Classification des isométries par points invariants

Soit E l’ensemble des points invariants par une isométrie f de l’espace. On a le tableau suivant :

3. Composée de deux symétries orthogonales par rapport à un plan

3.1. Composée de deux réflexions de plans parallèles

Soit (P1) et (P2) deux plans parallèles, on désigne par SP1 et SP2 les réflexions de plans respectifs (P1)
et (P2).
La composée SP1 ◦ SP2 est une translation de vecteur normal aux deux plans.

Démonstration
Soit A1 un point de (P1) et A2 son projeté orthogonal sur (P2). Le vecteur

−−−→
A1A2 est un vecteur normal à

(P1) et (P2).

Soit M un point de l’espace, M1 son image par SP1 et M2 l’image de M1 par SP2 .

On désigne par H1 et H2 les milieu respectifs de [MM1] et [M1M2]. On a :
−−−→
MM2 =

−−−→
MM1 +

−−−−→
M1M2 = 2

−−−→
H1M1 + 2

−−−→
M1H2 = 2

−−−→
H1H2 = 2

−−−→
A1A2.

D’où, SP2 ◦ SP1 = t
2
−−−→
A1A2

.
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3.2. Composée de deux réflexions de plans sécants

Soit (P1) et (P2) deux plans sécants selon la droite (∆). La composée SP2 ◦ SP1 est une rotation d’axe
(∆) et d’angle θ = 2(P̂1,P2). On note :

SP2 ◦ SP1 = R(∆,θ) avec

{
θ = 2(~u1, ~u2)[2π]

(∆) = (P1) ∩ (P2)

En particulier, la composée de deux réflexions de plans perpendiculaires est un demi-tour d’axe (∆)
ou symétrie orthogonale d’axe (∆).

Remarque : SP ◦ SP = Idε.

4. Applications
Exercice 1 :
L’espace ε est rapporté à un repère orthonormé (O;~i,~j,~k) . On considère l’application ponctuelle f qui à
tout point M(x, y, z) associe le point M ′(x′, y′, z′) tel que :

x′ = 1
3
(2x− 2y − z + 12)

y′ = 1
3
(2x− y − 2z + 24)

z′ = 1
3
(−x− 2y + 2z + 12)

.

1. Montrer que f est une isométrie
2. Déterminer l’ensemble des points invariants de f
3. a. En déduire la nature de f

b. Caractériser f

Solution 1 :
1. Montrons que f est une isométrie

Soit M(x, y, z) et N(a, b, c) deux points de l’espace ε, M ′(x′, y′, z′) et N(a′, b′, c′) leurs images res-
pectives par f .

f est une isométrie si ‖
−−→
MN‖ = ‖

−−−→
M ′N ′‖
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−−−→
M ′N ′

a′ − x′b′ − y′
c′ − z′

 =

 1
3
(2a− 2b− c)− 1

3
(2x− 2y − z)

1
3
(2a− b− 2c)− 1

3
(2x− y − 2z)

1
3
(−a− 2b+ 2c)− 1

3
(−x− 2y + 2z)

 =

 2
3
(a− x)− 2

3
(b− y)− 1

3
(c− z)

−2
3
(a− x)− 1

3
(b− y)− 2

3
(c− z)

−1
3
(a− x)− 2

3
(b− y) + 2

3
(c− z)


‖
−−−→
M ′N ′‖2 = 4

9
(a− x)2 + 4

9
(a− x)2 + 1

9
(a− x)2 + 4

9
(a− y)2 + 1

9
(b− y)2 + 4

9
(b− y)2+

+1
9
(c− z)2 + 4

9
(c− z)2 + 4

9
(c− z)2

= (a− x)2 + (b− y)2 + (c− z)2

On a : ‖
−−−→
M ′N ′‖2 = ‖

−−→
MN‖2 =⇒ ‖

−−−→
M ′N ′‖ = ‖

−−→
MN‖. D’où f est une isométrie.

2. Déterminons l’ensemble des points invariants de f

Posons f(M) = M c’est - à dire x′ = x, y′ = y et z′ = z. On :
3x = 2x− 2y − z + 12

3y = 2x− y − 2z + 24

3z = −x− 2y + 2z + 12

⇐⇒


x+ 2y + z − 12 = 0

2x+ 4y + 2z − 24 = 0

x+ 2y + Z − 12 = 0

=⇒


x+ 2y + z − 12 = 0

x+ 2y + z − 12 = 0 = 0

x+ 2y + Z − 12 = 0

.

Le système se réduit en une seule équation x+2y+z−12 = 0. Alors l’ensemble des points invariants
est le plan (P) d’équation : x+ 2y + z − 12 = 0

3. a. Déduisons la nature de f

L’ensemble des points invariants de f étant le plan (P), alors f est une symétrie orthogonale du
plan.

b. Élément caractéristique de f

C’est le plan (P) : x+ 2y + z − 12 = 0

Exercice 2 :
L’espace ε est rapporté à un repère orthonormé (O;~i,~j,~k) . On considère la rotation R qui à tout point
M(x, y, z) associe le point M ′(x′, y′, z′) telle que :

x′ = x

y′ =
√

2
2
y −

√
2

2
z + 1−

√
2

2

z′ =
√

2
2
y +

√
2

2
z −

√
2

2
.

• Déterminons les éléments caractéristiques de R.

- L’axe (∆).

M ∈ (∆)⇐⇒ R(M) = M ⇐⇒


x = x

y =
√

2
2
y −

√
2

2
z + 1−

√
2

2

z =
√

2
2
y +

√
2

2
z −

√
2

2
.

⇐⇒


x = x

(2−
√

2)y +
√

2z = 2−
√

2

−
√

2y + (2−
√

2)z = −
√

2

⇐⇒

{
y + (

√
2 + 1)z = 1

y − (
√

2− 1)z = 1

=⇒ z = 0, y = 1 , ainsi,


x = λ

y = 1

z = 0.

(∆) est la droite passant par le point A(0, 1, 0) et de vecteur directeur ~i.

- Angle θ.
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Soit g la restriction de f au plan (O, y, z), on :

g :

{
y′ =

√
2

2
y −

√
2

2
z + 1−

√
2

2

z′ =
√

2
2
y +

√
2

2
z −

√
2

2
.

Ainsi

g :

{
y′ = cos π

4
y − sin π

4
z + 1−

√
2

2

z′ = cos π
4
y + sin π

4
z −

√
2

2

D’où θ = π
4
[2π]

Exercice 3 :

L’espace ε est rapporté à un repère orthonormé (O;~i,~j,~k) . On considère l’application ponctuelle f qui à
tout point M(x, y, z) associe le point M ′(x′, y′, z′) tel que :

x′ = z + 2

y′ = x− 1

z′ = y − 1

.

1. Montrer que f est une isométrie
2. Déterminer la nature de f et ses éléments caractéristiques

Solution 3 :
1. Montrons que f est une isométrie.

Soit M ′(x′, y′, z′) et N ′(a′, b′, c′) les images respectifs de M(x, y, z) et N(a, b, c).

M ′N ′2 = (a′ − x′)2 + (b′ − y′)2 + (c′ − z′)2 = (c+ 2− z − 2)2 + (a− 1− x+ 1)2 + (b− 1− y + 1)2 =
(c− z)2 + (a− x)2 + (b− y)2 = MN2.

M ′N ′2 = MN2, ainsi f est une isométrie.

2. Nature et éléments caractéristiques de f .

• Ensemble des points invariants par f

f(M) = M ⇐⇒


x = z + 2

y = x− 1

z = y − 1

⇐⇒


x− z = 2

y − x = −1

z − y = −1

=⇒⇐⇒


x = 1 + λ

y = λ

z = −1 + λ

.

Alors f est une rotation.

• Déterminons l’angle de la rotation

L’axe (∆) de la rotation a pour vecteur directeur ~u(1, 1, 1) et passe par le point (1, 0,−1).

Déterminons l’équation du plan (P) passant par le point H et perpendiculaire à l’axe (∆).

Ainsi, (P) : x+ y + z = 0.

Soit A(1,−2, 1) un point de (P) et A′(3, 0,−3)son image par R .
−−→
HA′(2, 0,−2),

−−→
HA(0,−2, 2). On

a : HA2 = 8 et HA′2 = 8.
−−→
HA.
−−→
HA′ = −4 et det(

−−→
HA,

−−→
HA′, ~u

‖~u‖) = 4
√

3.

Soit θ une mesure de l’angle de la rotation de f .
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On a :

cos θ = −1
2

sin θ =
√

3
2

=⇒ θ = 2π
3

[2π]

Exercice 4 :
L’espace ε est rapporté à un repère orthonormé (O;~i,~j,~k) . On considère la transformation ponctuelle f
qui à tout point M(x, y, z) associe le point M ′(x′, y′, z′) telle que :

x′ = y + 3

y′ = x− 2

z′ = −z

.

1. Déterminer l’ensemble des points invariants de f

2. On admet que f est un vissage, déterminer les élément caractéristiques f .

Solution 4 :

1. Ensemble des points invariants de f .

f(M) = M ⇐⇒


x = y + 3

y = x− 2

z = −z

⇐⇒


x− y = 3

x− y = 2

z = 0

Le système étant incompatible, alors l’ensemble des points invariants par f est vide.

2. Éléments caractéristiques de f

• L’axe (∆)

−−−→
MM ′ =

−−−−→
M ′M ′′ avec M ′ = f(M) et M ′′ = f(M ′), on a :

x′ − x = x′′ − x′

y′ − y = y′′ − y′

z′ − z = z′′ − z′
⇐⇒


x = 5

2
+ y

2x− 2y = 5

z = 0

.

Posons y = λ, on a :


x = 5

2
+ λ

y = λ

z = 0

(∆) est une droite passant par A(5
2
, 0, 0) et de vecteur directeur ~u(1, 1, 0)

• Angle θ

Déterminons l’équation du plan (P) passant par le point A et perpendiculaire à l’axe (∆).

On trouve, (P) : x+ y − 5
2

= 0.

Déterminons l’expression de la rotation R

f = t ◦R =⇒ R = f ◦ t−1.
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t−~u :


x′′ = x′ − 1

2

y′′ = y′ − 1
2

z′′ = z′

R = t−~u ◦ f :


x′ = y + 5

2

y′ = x− 5
2

z′ = −z

Soit B(0, 5
2
, 0) un point de (P) et B′(5,−5

2
, 0) son image par R.

−→
AB(−5

2
, 5

2
, 0),
−−→
AB′(5

2
,−5

2
, 0). On a : AB2 = 25

2
et AB′2 = 25

2
.

−→
AB.
−−→
AB′ = −25

2
et det(

−→
AB,
−−→
AB′, ~u

‖~u‖) = 0.

On a :

cos θ = −1

sin θ = 0
=⇒ θ = π[2π]

• Le vecteur ~v de la translation

Soit A′ l’image de A par f .

f(A) = A′ =⇒


x′ = 3

y′ = 1
2

z′ = 0

; A′

3
1
2

0

 ;
−−→
AA′ = ~v ⇐⇒ ~v

3− 5
2

1
2

0

.

D’où ~v

1
2
1
2

0

 est le vecteur de la translation.
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